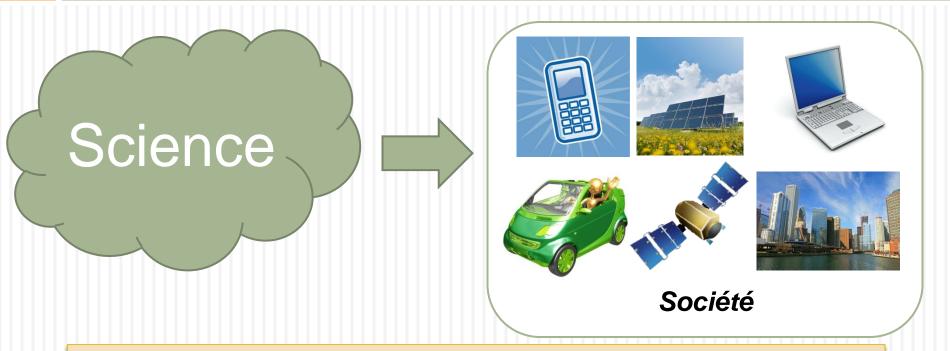


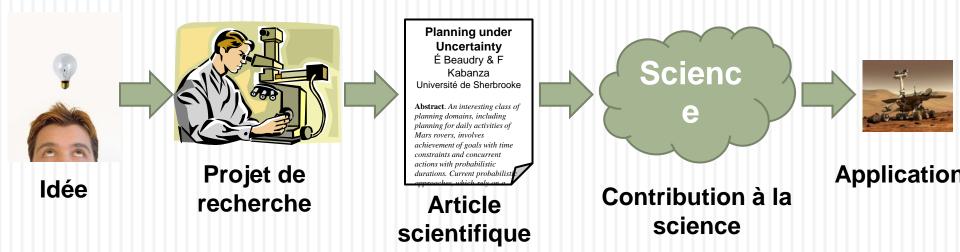
Éric Beaudry, PhD – eric.beaudry@usherbrooke.ca IFT821 – Méthodologie de communication en informatique

Sommaire



- Contribution à la science.
- Caractéristiques d'un article scientifique.
- Étapes de rédaction.
- Équations, tableaux, figures, etc.
- Bibliographique.
- Outils.
- Processus de publication.
- Exercices.

Contribution à la science


L'article scientifique comme outil

La science est un ensemble de connaissances au service de la société

« Science is the orderly collection of observations about the natural world made via well-defined procedures, and modern science is an archive of scientific papers. » - Michael Jay Katz

Contribution à la science

« A research project has not contributed to science until its results have been reported in a paper, the observations in which are accompanied by complete recipes. » - Michael Jay Katz

L'article scientifique

Objectifs et caractéristiques

Objectifs d'un article scientifique (1)

Communiquer.

Message = nouvelle conclusion, nouvelle idée, nouvelle connaissance, nouvelle méthode, nouvelle approche pour hypothèse* différente, etc.

> Exemple:

- La consommation d'un verre de vin par jour peut réduire les risques de cancer.
- Présentation d'une méthode originale pour reconstruire un objet en 3D à partir d'une séquences d'images prises par une caméra non calibrée.
- Le jeu de serpents et échelles modifié contient des défis intéressants pour l'enseignement des processus de décision de Markov.
- Une nouvelle méthode de planification sous incertitude.
- Persistance des connaissances (forme écrite).

^{*}Attention : dans cette présentation, le mot hypothèse peut avoir deux sens : (1) une propriété du problème asumée (assumption en anglais); (2) une explication possible.

Objectifs d'un article scientifique (2)

- Reproductivité des résultats.
 - La reproductivité des résultats est un critère essentiel en science afin d'assurer l'objectivité de la conclusion.
 - En informatique, cela fait souvent défaut puisque l'implémentation (code source) n'est pas systématiquement exigée dans les publications scientifiques.
 - Expérimentations sur des jeux de données reconnus.
 - Ensemble de benchmarks établis.
 - Ex: domaines du ICAPS / IPC, données odométrie et laser pour construction de cartes en robotique, etc.

Caractéristiques d'un article scientifique (1)

- Sujet précis.
 - Un seul axe principal (une seule conclusion).
 - Si l'article a deux conclusions, il peut être préférable de le scinder en deux articles (article ≠ rapport).
- Langage précis.
 - Utilisation de nombres, symboles, équations.
 - Texte objectif et neutre.
 - Ton scientifique : on n'écrit ni un roman, ni un poème.
 - Terminologie utilisée très importante. Ne pas hésiter à répéter les même termes). Éviter les synonymes.
- Droit au but.
 - L'objectif principal est de tirer une conclusion.

Caractéristiques d'un article scientifique (2)

- Complet et concis.
 - Contient tous les détails pour comprendre et reproduire les résultats. Toutefois, ne contient pas de détails superflus.
- Le lecteur est initié au domaine.
 - Articles de conférence ou de journal scientifique.
 - Il est possible de prendre pour acquis que le lecteur est expert dans le domaine.
 - Articles de revues populaires (Nature, Science, etc.).
 - L'accent doit être mis sur la vulgarisation et montrer les retombées possibles pour la société.
- Anglais.
 - L'anglais est généralement la langue utilisée en sciences.

Caractéristiques d'un article scientifique (3)

- Utilisez un langage clair, des phrases courtes, des mots simples, etc.
 - "It may therefore not be unexpected that . . . "
 - □ → "These results suggest . . ."
 - An effort was made to . . .
 - We tried to . . .
- Soyez pédagogique.
- Le but d'un article est le transfert de nouvelles connaissances.

Caractéristiques d'un article scientifique (4)

- Temps des verbes.
 - Présent.
 - Pour tout ce qui est connu, pour des affirmations, etc.
 - « L'algorithme de planification utilise une recherche dans un graphe ».
 - Utilisez au maximum le temps présent.
 - « Cet article est organisé de la façon suivante. Nous débuterons par une revue de littérature. Ensuite, nous présenterons... »
 - « La section 2 dresse une liste des approches existantes. La section 3 présente l'algorithme proposé. La section 4 reporte les résultats obtenus. »
 - Passé : pour décrire les manipulations des données et des résultats.

Caractéristiques d'un article scientifique (5)

- Utilisez de la 3^e personne plutôt que la première personne.
 - Dans cet article, nous proposons une nouvelle approche pour générer des plans.
 - Cet article présente un nouvelle approche pour générer des plans.
 - Nos résultats montrent que notre approche fonctionne mieux.
 - Les résultats obtenus montrent que l'approche proposée fonctionne mieux.
- Parfois, pour insister, il est possible d'utiliser le « nous ».
 - Exemple: « Dans cet article... notre principale contribution est l'utilisation d'un réseau bayésien pour gérer l'incertitude sur le temps ».
- En français, certains recommandent d'éviter le « on » puisque le langage parlé utilise parfois le « on » en remplacement fautif du « nous ». C'est une question de style de rédaction.

Éthique et rigueur scientifique

- Soulevez toutes les questions pertinentes (doutes, limites, incertitude, sources d'erreurs).
 - N'exagérez vos conclusions, ne manipulez pas malicieusement les données pour obtenir une conclusion souhaitée.
 - De bonnes raisons doivent justifier l'omission volontaire de données qui pourraient contredire les conclusions.
 - Les omissions douteuses peuvent entacher la crédibilité de la communauté scientifique:
 - Exemple : le faux scandale ClimateGate (2009-2010).
- La reproductivité des résultats est une garantie d'honnêteté scientifique.
- Évitez le flou artistique en complexifiant les choses inutilement.

Structure d'un article scientifique

- Structure stéréotypée.
 - Résumé.
 - Introduction.
 - Matériel et méthodologie.
 - Résultats.
 - Discussion.
 - Conclusion.
 - Références.
- Tout l'article est fortement orienté vers la conclusion.
- Peut varier selon la discipline scientifique.

Rédaction

Étapes

Étapes d'un projet de recherche

Étapes typiques:

- 1. Formuler une hypothèse.
- 2. Implémenter un programme.
- 3. Réaliser les expérimentations.
- 4. Analyser les résultats.
- Tirer une conclusion.
- 6. Publier un article scientifique.

Conseils:

- Rédigez tout le long de votre projet.
 - La rédaction vous force à synthétiser vos idées et à clarifier votre pensée. Ne vous privez pas de cet outil!
 - Processus itératif : n'essayez pas de rédiger d'un seul jet.
- N'attendez pas à la dernière minute pour rédiger.

Étapes de rédactions

- À la suite d'un projet de recherche, plusieurs conclusions peuvent être tirées.
 - En général : une conclusion = un article scientifique.
 - Une conclusion peut être présentée de plusieurs façons.
 - Il est donc prématuré de commencer par l'introduction.
- Ordre de rédaction suggéré des sections.
 - Matériel et méthodologie.
 - Résultats.
 - Discussion.
 - Conclusion.
 - Introduction.
 - Titre et résumé.

Article: Matériel et méthodologie

Décrire :

- les hypothèses (« assumptions ») requises;
- les fondements mathématiques;
- l'approche ou méthode proposée;
- les instructions pour réaliser les expériences (parfois dans résultats).

Conseils:

Faites un journal dans lequel vous prenez des notes tous les jours.

Article: Résultats (1)

- Présentez toutes les variables importantes.
 - Évitez les variables qui ne sont pas pertinentes à la conclusion.
 - Si des variables sont omises, justifiez pourquoi.
 - Rappel : les résultats doivent soutenir la conclusion.
- Utilisez des tableaux et des diagrammes.
 - La présentation des résultats doit aider son interprétation.
- Conservez tout : les programmes informatiques, les jeux de données et les résultats.
 - Des lecteurs voudront expérimenter et comparer votre approche.

Article: Résultats (2)

- Résumez les conditions d'expérimentation.
 - Indiquez les variables pouvant introduire un biais (significatif).
 - Expérience en laboratoire: température, pression de l'air, taux d'humidité, etc.
 - En informatiques :
 - Matériel informatique utilisé :
 - Processeur, nombre de cœurs, mémoire vive disponible, etc.
 - Caractéristiques logicielles :
 - Système exploitation, langage de programmation, compilateur, etc.
 - Si l'algorithme a une complexité non polynomiale, ces aspects sont beaucoup moins importants.

Article: Discussion

- Résumez brièvement les résultats.
- Énumérez d'autres approches connexes à la problématique abordée.
- Comparez les résultats.
 - Notez les différences et les similitudes.
 - Expliquez la cause de ces différences.
 - Nuancez s'il a lieu (ex.: hypothèses (assmptions) différentes).
- En informatique : cette section est parfois combinée avec les résultats.

Article: Conclusion

- Rappel du message de l'article.
 - Très bref (un seul paragraphe suffit).
- Ajout possible : travaux futurs.
 - Il peut être intéressant d'identifier des pistes pour des travaux futurs.
 - Cela montre que l'idée présentée peut être améliorée et approfondie, ce qui donne de la valeur à l'article.
 - Un travail est moins intéressant si ses limites ne peuvent être repoussées par des travaux futurs.

Article: Introduction

- Identifiez la problématique (motivation du sujet).
 - Idéalement liée à une application montrant qu'il s'agit d'une problématique valant la peine d'être étudiée.
- Background.
 - Identification des travaux similaires.
 - Mini-critique de ces travaux.
- Identifiez la ou les lacunes (« gap ») que l'article (votre approche) va combler.
 - Ces lacunes doivent être liées à conclusion de l'article.
- Introduire intuitivement votre approche.
- Optionnel : donnez le plan de l'article.
 - Parfois « obligatoire ».

Article: Résumé et titre

- Le résumé doit être court (200 à 400 mots), sans abréviation, sans référence et dans un langage le plus simple possible.
- À rédiger à la toute fin.
- Le titre doit être précis.
- Le titre doit être très fortement lié à la conclusion.
- Vous êtes en sciences... un titre accrocheur n'a pas nécessairement sa place.
 - Mais, pour des « challenge papers », cela a sa place.

Comment écrire du texte

- Très peu d'auteurs sont capables d'écrire un article d'un seul jet.
- La rédaction se fait donc au moyen de plusieurs itérations.
- Adoptez la terminologie reconnue dans le domaine.
- Introduisez de nouveaux termes uniquement lorsque nécessaire.

Comment écrire du texte (2)

- Démarrez avec le schéma typique des sections.
- Listez des idées.
- Collectez des données externes.
- 4. Transformez des idées en phrases simples.
- 5. Groupez les idées en thèmes.
- 6. Formez des paragraphes.
- 7. Prenez une pause.
- 8. Révisez les paragraphes: assurez un bel enchaînement entre les phrases. (A→B. B→C. C→D.).
- Effectuez le travail de finition.

Comment écrire du texte (3)

Voir les exemples à partir de la page 8 du Chapitre 1 (Tools and Techniques) du livre From Research to Manuscript de Michael Jay Katz.

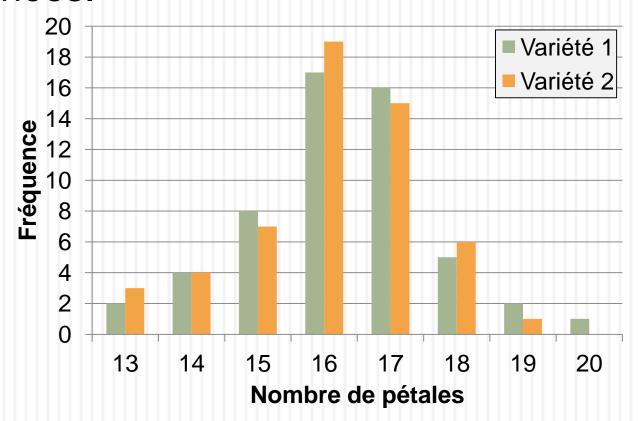
Équations, tableaux, figures, ...

Des éléments essentiels pour faciliter la compréhension d'un article scientifique

Tableaux

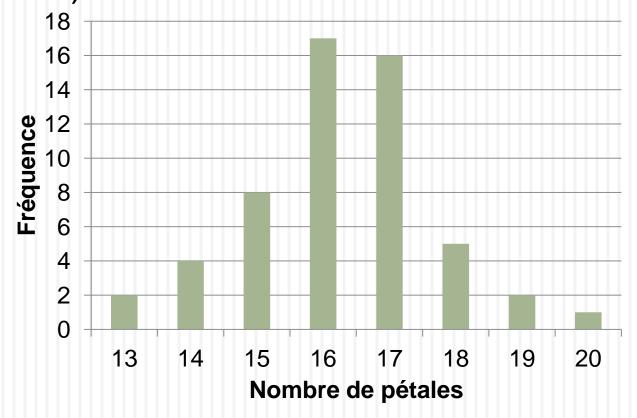
- Présentez uniquement les données pertinentes.
- Triez les données.
- Exemple:
 - Étude sur des fleurs d'une espèce donnée.
 - But = déterminer la distribution du nombre de pétales.

ID Fleur	Nombre de pétales
1	15
2	15
3	14
4	18
5	16
6	15
7	17
8	18



Nombre de pétales	Fréquence
13	2
14	4
15	8
16	17
17	16
18	5
19	2
20	1

IFT 821 / Rédiger et publier un article scientifique (Été 2011)


Diagrammes

 Les diagrammes permettent de visualiser les données.

Diagrammes

 Évitez les légendes inutiles (ex: une seule variable).

Figures

- Une image vaut mille mots!
- Utilisez des exemples simples et bien ciblés pour montrer plusieurs cas différents.
- Voir les exemples présentées en classes.

Références des éléments dans le texte

Tous les tableaux, les figures, algorithmes, etc. doivent être référencés et expliqués dans le texte.

Impression et autres considérations

- L'article final doit être imprimable en noir et blanc.
- Gardez votre article (fichier PDF) le plus compact possible.
 - Nombre important d'articles scientifiques (archives, proceedings sur CD / clé USB, etc.).
 - IEEE Explore contient plus de 3 million de documents!
- Utilisez des formats vectoriels
 - N'utilisez pas Paint dans Windows!
 - Vous êtes en informatique, vous devez maîtriser les outils.
- Soyez professionnel.

Bibliographique

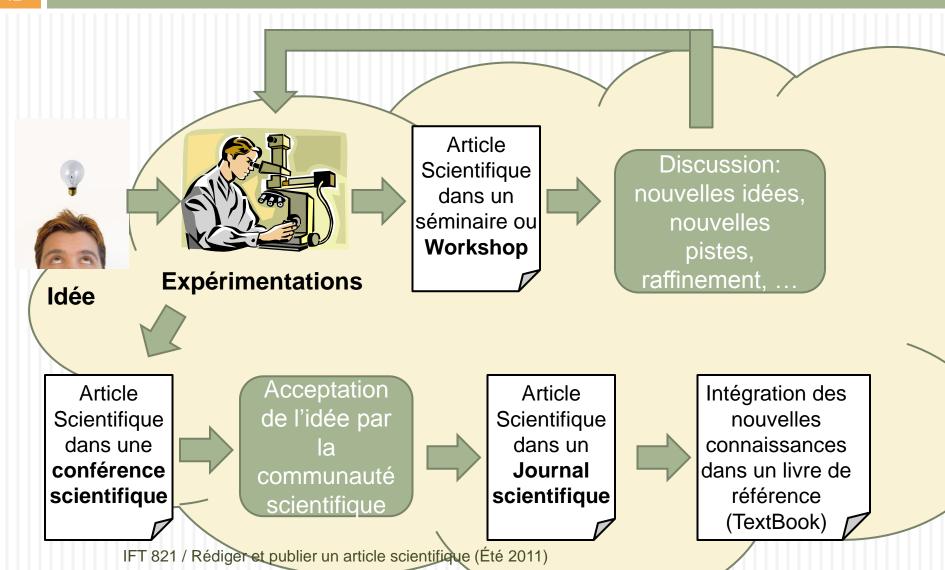
Bibliographique: quoi citer?

- Citez les travaux les plus pertinents reliés au sujet d'étude.
- Si le travail présenté est inspiré d'autres travaux, il faut les citer.
- Chaque fait non prouvé ou non universellement reconnu doit être appuyé par une référence.
 - Ex: « Les robots ayant des roues conventionnelles sont plus robustes que ceux munis de roues omnidirectionnelles » requiert une référence.
- Citez les travaux selon leur importance :
 - Les articles de journaux sont plus détaillés que ceux de conférences.
 - Citez le premier article sur le sujet précis qui offre le background requis pour comprendre.
- Suivez les instructions pour le formatage.
- Chaque référence doit être citée au moins une fois dans le texte.

Outils de rédaction

Outils recommandés

- LaTeX (PDFTex).
- BibTex.
- GnuPlot.
- XFig, Inkscape.
- GraphViz.
- Asymptote.
- SubVersion.
- □ ...


Processus de publication scientifique

Survol général

Médiums de publication d'articles scientifiques

- Atelier (workshop) dans une conférence scientifique.
 - Présentation d'une idée originale, mais incomplète.
- Conférences scientifiques.
 - Présentation d'une idée nouvelle et originale.
- Journaux scientifiques.
 - Approfondir une idée originale ou récente (pouvant être avoir déjà été publiée dans une conférence).
 - Processus itératif.
- Recueil d'articles (« Chapitres de livre »).
 - Contient des articles (chapitres) sur un thème ciblé.
- Livre de référence (≠ article).
 - Un livre (textbook) puise généralement son matériel depuis plusieurs publications scientifiques.
 - Présentation uniforme.

Cheminement typique d'une idée

Appel aux contributions (Call for papers)

- Lisez très attentivement cet appel afin d'être certain que vous soumettez au bon endroit.
- Suivez bien les instructions.
- Voir exemples.

Où publier (1)

- À partir de votre revue de littérature, listez les conférences et journaux.
 - Cherchez sur : vos ressources aux bibliothèques, CiteSeer, Google Scholar, IEEE Explore, Microsoft Academic Search, etc.
- Faites valider la liste par votre directeur de recherche.
 - Ce dernier pourra la compléter.
- Triez par ordre d'importance:
 - Réputation et prestige.
 - Facteur d'impact (ex d'indices: nombre de citation/an).
 - Taux d'acceptation.
 - Public cible (théorique, application, vulgarisation, etc.).
- Planifiez vos publications.
 - Notez les dates de soumissions aux conférences.

Où publier (2)

- « Valeur » des publications
 - Varie d'une discipline à l'autre.
- En sciences en général
 - Les journaux ont une plus grande valeur que les conférences.
- En informatique, et tout particulièrement en IA :
 - Les grandes conférences ont une valeur quasi équivalente aux grands journaux et souvent plus grandes que les journaux de 2^e rang.
- Regarder les membres du « editorial board » pour juger de la qualité du processus de révision par des pairs.

Appel aux soumission (Call for Papers)

Soumission de l'article

Révision par des pairs (Peer-Review)

Commentaires des réviseurs

Répondre aux commentaires des réviseurs (Feedback)

Ajustement par les réviseurs (Raking)

Les organisateurs sélectionnent les articles acceptés. Envoie des avis d'acceptation (a/s corrections) (Notification)

Production version finale (Camera-Ready)

Édition de l'acte de conférence (Proceedings)

Inscription à la conférence

Présentation à la conférence

Propriété intellectuelle

- Plusieurs conférences et journaux exigent le transfert des droits de reproduction (copyright)
 - Donc, l'article peut ne plus vous appartenir.
 - Il se peut que vous ne puissiez pas rendre disponible votre propre article sur votre site web personnel.
 - Vous gardez cependant certains droits moraux, comme la reconnaissance d'être auteur et d'avoir réalisé le travail. C'est ce qui compte!

Auteurs

- Qui doit figurer comme auteurs?
 - Chaque auteur doit avoir participé à l'élaboration des idées et à la rédaction.
 - Chaque auteur doit être en mesure de défendre l'article (en entier). Pas toujours le cas en pratique.
- Ordre de parution des auteurs.
- Politique de l'UdeS: http://www.usherbrooke.ca/etudes-superieures/encadrement/conditions-detudes/protection-de-la-propriete-intellectuelle/publications-scientifiques-et-droit-dauteur/

Autre référence : http://aof.revues.org/index201.html#tocto2n8

Exercices

Exercices dirigés en classe ...

Références

- 1. Katz, Michael Jay. From research to manuscript: a guide to scientific writing. Springer, 2e édition, 2009. (Édition 2006 disponible dans Internet à partir du catalogue Crésus de l'UdeS).
- Day, Robert A. How to write and publish a scientific paper. Oryx Press; 6e édition, 2006.

FIN

Bonnes publications!